LESSON PLANNING PROGRAMME
DepartmentFacultySubjectSemesterTopic TypePaper TypeUnitTopic DescSub TopicClass
MathematicsTapas DasMATHEMATICS (MAJOR )1TheoryMajor-1Unit 4Vector spacesSubspaces, algebra of subspaces5
MathematicsTapas DasMATHEMATICS (MAJOR )1TheoryMajor-1Unit 2Vector spacesLinear combination of vector, independence and dependence, deletion theorem, basis and dimension,10
MathematicsArpita SikderMATHEMATICS (MAJOR )1TheoryMajor-1Unit ITheory of equationsRelation between roots and coeffecients of equations4
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )1TheoryMajor-1Unit ILinear AlgebraVector Space4
MathematicsDebashis Kumar MandalMATHEMATICS (MINOR )1TheoryMinor-1Unit 2Integral CalculusReduction formula2
MathematicsTapas DasMATHEMATICS (MINOR )1TheoryMinor-1Unit IDifferential CalculusLimit and continuity of function8
MathematicsDebashis Kumar MandalMATHEMATICS (MINOR )1TheoryMinor-1Unit IIntegral calcuiusReduction4
MathematicsNabanita Dey MATHEMATICS (MINOR )1TheoryMinor-1Unit IDifferential CalculusSuccessive differentiation, Leibnitz’s theorem,L’Hospital’s rule and it’s applications, Partial differentiation, Euler’s theorem on Homogeneous Functions10
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )2TheoryMajor -2Unit 3convergence & divergence of infinite seriesconvergence & divergence of infinite series2
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )2TheoryMajor -2Unit 2sequence of real numbersCauchy's first and second limit theorems with problems2
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )2TheoryMajor -2Unit 3convergent and divergence of infinite seriescauchy's criterion of convergence series1
MathematicsArpita SikderMATHEMATICS (MAJOR )2TheoryMajor -2Unit I ordinary differential equation-1Equation of first order and first degree4
MathematicsArpita SikderMATHEMATICS (MAJOR )2TheoryMajor -2Unit IOrdinary Differential EquationEquation of First order but not of first degree 4
MathematicsArpita SikderMATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal analysisCountable sets, Uncountable sets, Countability of R2
MathematicsArpita SikderMATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal analysisBounded sets , Unbounded sets , suprema and infinima2
MathematicsArpita SikderMATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal analysisThe Completeness Property of R, The Archimedean Property, Arithmetic Continum,Linear Continum, Density of Rational ( And Irrational) numbers in R 4
MathematicsNabanita Dey MATHEMATICS (MAJOR )2TheoryMajor -2Unit 3Differential EquationSimultaneous linear differential equations 2
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )2TheoryMajor -2Unit 2Sequence of a Real numbersNested interval theorem. Subsequences.1
MathematicsArpita SikderMATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal analysisThe Completeness Property of R, The Archimedean Property, Arithmetic Continum,Linear Continum, Density of Rational ( And Irrational) numbers in R 4
MathematicsBINA BHOWMIK MATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal Analysis-I: Review of Algebraic and Order Properties of R, d-neighborhood of a point set in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded S3
MathematicsBINA BHOWMIK MATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal Analysis-IThe Completeness Property of R. The Archimedean Property,Arithmetic continuum, Linear continuum. Density of Rational (and Irrational) numbers in R with special reference to well-ordering property.3
MathematicsBINA BHOWMIK MATHEMATICS (MAJOR )2TheoryMajor -2Unit IReal Analysis-ILimit points of set, isolated points, open sets,closed sets, Derived set,Union,Intersection,Complement of open and closed set in R. Closure of a set and interior of a set3
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )2TheoryMajor -2Unit 2sequence of real numbersCauchy Sequence0
MathematicsNabanita Dey MATHEMATICS (MINOR )2TheoryMinor-2Unit 3Ordinary Differential EquationSecond order linear equations with variable co-efficients: Reduction of order when one solution is known.Complete solution.Reduction to Normal form. Change of independent variable.4
MathematicsArpita SikderMATHEMATICS (MINOR )2TheoryMinor-2Unit IDifferential Equation of first order and first degreeHomogeneous and Exact Equations3
MathematicsBINA BHOWMIK MATHEMATICS (MINOR )2TheoryMinor-2Unit 2Partial Differential EquationSolution of Non-linear partial differential equation by Charpit’s method3
MathematicsDebashis Kumar MandalMATHEMATICS (MINOR )2TheoryMinor-2Unit 2Ordinary Differential EquationMethod of variation of parameters.Cauchy-Euler’s homogeneous equation and Reduction to an equation with constant co-efficients.simple Eigen value problem. 5
MathematicsNabanita Dey MATHEMATICS (MINOR )2TheoryMinor-2Unit IOrdinary Differential EquationOrthogonal trajectories2
MathematicsNabanita Dey MATHEMATICS (MINOR )2TheoryMinor-2Unit IPartial Differential Equation Partial Differential Equations – Basic concepts and definitions, Formation of PDE, Order and Degree of PDE, Types of PDE (Linear,semi-linear, quasi-linear). Solution of linear PDE by Lagrange’s Meth8
MathematicsNabanita Dey MATHEMATICS (MAJOR )3TheoryMajor-3Unit IBoolean AlgebraBoolean Algebra: Huntington postulates for Boolean algebra, Algebra of sets and switching algebra as examples of Boolean Algebra, duality principle, Boolean functions, Normal forms, minimal and maxima10
MathematicsTapas DasMATHEMATICS (MAJOR )3TheoryMajor-3Unit ICalculusHyperbolic functions, higher order derivatives, Leibnitz rule and its applications10
MathematicsArpita SikderMATHEMATICS (MAJOR )3TheoryMajor-3Unit ICaiculus Hyperbolic functions , higher order derivative, Leibneitz rule,L hospital's rule3
MathematicsArpita SikderMATHEMATICS (MAJOR )3TheoryMajor-3Unit 2CalculusReduction Formula,Parameterizing a curve, arc length of a curve0
MathematicsArpita SikderMATHEMATICS (MAJOR )3TheoryMajor-3Unit 2CalculusReduction Formula,Parameterizing a curve, arc length of a curve4
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )3TheoryMajor-4Unit 2Complex Analysiscomplex Integration8
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )3PracticalMajor-4Unit 2Complex Analysiscomplex Integration6
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )3TheoryMajor-4Unit 2Complex AnalysisAnalytic function, & Contour Inegral5
MathematicsBINA BHOWMIK MATHEMATICS (MAJOR )3TheoryMajor-4Unit IPartial Differential EquationBasic concepts, definitions, formations,2
MathematicsBINA BHOWMIK MATHEMATICS (MAJOR )3TheoryMajor-4Unit IPartial Differential EquationGeometrical Interpretation2
MathematicsBINA BHOWMIK MATHEMATICS (MAJOR )3PracticalMajor-4Unit IPartial Differential EquationPlotting of a solution of Cauchy problem for first order PDE4
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )3PracticalMajor-4Unit IComplex AnalysisIntroduction to MATLAB & Complex No.Problem10
MathematicsDebashis Kumar MandalMATHEMATICS (MAJOR )3TheoryMajor-4Unit IComplex AnalysisAnalytic Function6
MathematicsArpita SikderDSC-MTMG4TheoryDSC A4Unit IAlgebraDefinition and Examoles of Groups , Abelian Groups and Non-Abelian Groups3
MathematicsBINA BHOWMIK DSC-MTMG4TheorySEC2Unit IVector CalculusDifferentiation and partial differentiation of a vector function4
MathematicsBINA BHOWMIK DSC-MTMG4TheorySEC2Unit IVector CalculusDerivative of sum, dot product5
MathematicsBINA BHOWMIK DSC-MTMG4TheorySEC2Unit IVector Calculuscross product of two vectors.5
MathematicsBINA BHOWMIK DSC-MTMG4TheorySEC2Unit IVector CalculusGradient, divergence and curl.6
MathematicsArpita SikderDSC-MTMG4TheorySelectUnit IAlgebraDefinition and examples of groups , examples of abellian and non-abelian groups .2
MathematicsArpita SikderDSC-MTMG4TheorySelectUnit IAlgebraThe group Zn of integers under addition modulo n and the gruop U(n) of units under multiplicationmodulo n , Cyclic Gruops.2
MathematicsArpita SikderDSC-MTMG4TheorySelectUnit IAlgebraComplex roots of unity, circle gruop, The general linear group GLn(n.R),groups of symmetries of an isoceles triangle.2
MathematicsArpita SikderDSC-MTMG4TheorySelectUnit IAlgebraSubgroups, Cyclic subgroups, the concept of a subgroup generated by a subset .2
MathematicsArpita SikderDSC-MTMG4TheorySelectUnit IAlgebraNOrmal subgroups and Quotient Groups.2
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IRING THEORYintegral domain2
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IRING THEORYfieds and its properties2
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IRING THEORYfieds and its properties2
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IRING THEORYSubrings 2
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IRING THEORYIdeals0
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IRING THEORYHomomorphism0
MathematicsArpita SikderMTMHCC4TheoryCore-10Unit IIdealsMaximal and prime ideals3
MathematicsNabanita Dey MTMHCC4TheoryCore-8Unit IMultivariate Calculus Directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization pr5
MathematicsNabanita Dey MTMHCC4TheoryCore-8Unit 3Vector Analysis Definition of vector field, divergence and curl. Line integrals, applications of line integrals: mass and work. Fundamental theorem for line integrals, conservative vector fields, independence of path7
MathematicsNabanita Dey MTMHCC4TheoryCore-8Unit 4Vector Analysis Green’s theorem, surface integrals, integrals over parametrically defined surfaces. Stokes theorem, The Divergence theorem.5
MathematicsBINA BHOWMIK MTMHCC4TheoryCore-9Unit IComplex AnalysisLimits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings6
MathematicsBINA BHOWMIK MTMHCC4TheoryCore-9Unit IComplex AnalysisDerivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability. Milne’s method.4
MathematicsBINA BHOWMIK MTMHCC4TheoryCore-9Unit 2Complex AnalysisAnalytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, definite integrals of functions.4
MathematicsDebashis Kumar MandalMTMHCC4PracticalCore-9Unit IComplex AnalysisDeclaring a complex number 2
MathematicsBINA BHOWMIK MTMHCC4TheoryCore-9Unit 2Complex AnalysisContours, Contour 18 integrals and its examples, upper bounds for moduli of contour integrals. Antiderivatives, proof of antiderivative theorem, Cauchy-Goursat theorem, Cauchy integral formula5
MathematicsBINA BHOWMIK MTMHCC4TheoryCore-9Unit 3Complex AnalysisAn extension of Cauchy integral formula, consequences of Cauchy integral formula. Mobius transformations.5
MathematicsDebashis Kumar MandalMTMHCC4PracticalCore-9Unit IComplex Analysis Declaring a complex number & Discussing their algebra and then plotting them. (4
MathematicsDebashis Kumar MandalMTMHCC4PracticalCore-9Unit IComplex Analysis Declaring a complex number & Discussing their algebra and then plotting them2
MathematicsDebashis Kumar MandalMTMHCC4TheorySEC2Unit 4Graph Theoryadjacency matrix , incident matrix, weighted graph 2
MathematicsDebashis Kumar MandalMTMHCC4TheorySEC2Unit IGraph TheoryOn counting trees, Spanning trees1
MathematicsDebashis Kumar MandalMTMHCC4TheorySEC2Unit IGraph TheoryRooted and Binary trees1
MathematicsDebashis Kumar MandalMTMHCC4TheorySEC2Unit 3Graph theoryOn counting trees, Spanning trees2
MathematicsDebashis Kumar MandalMTMHCC4TheorySEC2Unit 2Graph TheorySpanning trees2
MathematicsDebashis Kumar MandalMTMHCC4TheorySEC2Unit IGraph TheoryEulerian circuits, Eulerian graph,2
MathematicsDebashis Kumar MandalMTMHCC4PracticalSelectUnit IComplex Analysis(i) Declaring a complex number & Discussing their algebra and then plotting them. (ii) Finding conjugate, modulus and phase angle of an array of complex numbers.8
MathematicsBINA BHOWMIK DSC-MTMG5TheoryDSE A1Unit I Linear AlgebraLinear transformations2
MathematicsBINA BHOWMIK DSC-MTMG5TheoryDSE A1Unit I Linear Algebranull space, range, rank and nullity of a linear transformation6
MathematicsDebashis Kumar MandalMTMHCC5TheoryCore-11Unit IProbabilityDistribution functions, Expectations12
MathematicsDebashis Kumar MandalMTMHCC5TheoryCore-11Unit 2ProbabilityMathematical Expectations and Variance5
MathematicsTapas DasMTMHCC5TheoryCore-12Unit 2Riemann integration and Improper integral:inequalities of upper and lower sums, Darboux integration, Darboux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two12
MathematicsTapas DasMTMHCC5TheoryCore-12Unit 2Riemann integration and Improper integral:Riemann integrability of monotone and continuous functions, properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem 12
MathematicsTapas DasMTMHCC5TheoryCore-12Unit 3Series of functions:Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions. Theorems on th10
MathematicsTapas DasMTMHCC5TheoryCore-12Unit 4Fourier seriesFourier series, Trigonometric Fourier series and its convergence. Fourier series of even and odd functions, Fourier half-range series10
MathematicsBINA BHOWMIK MTMHCC5TheoryCore-12Unit ILaplace TransformLaplace of some standard functions,3
MathematicsBINA BHOWMIK MTMHCC5TheoryCore-12Unit ILaplace TransformExistence conditions for the Laplace Transform, Shifting theorems,5
MathematicsArpita SikderMTMHCC5TheoryDSE1Unit ILinear progrmming and Game theoryGraphical method0
MathematicsArpita SikderMTMHCC5TheoryDSE1Unit ILinear progrmming and Game theoryIntoduction to Linear programming problem and Basic solutions of a set of simultaneous linear equations .3
MathematicsArpita SikderMTMHCC5TheoryDSE1Unit ILinear progrmming and Game theoryTrasportation problem,Assignment Problem4
MathematicsNabanita Dey MTMHCC5TheoryDSE2Unit IIntoduction to Integral EquationIntroduction and basic Examples. Classification, Conversion to Volterra Equation to ODE, Conversion of IVP and BVP to Integral equation, Decomposition, Direct Computation, Successive Approximation, Su10
MathematicsBINA BHOWMIK MTMHCC5TheoryDSE2Unit 3 Dynamical systemFormulation of physical system2
MathematicsBINA BHOWMIK MTMHCC5TheoryDSE2Unit 3 Dynamical systemExistence and uniqueness of solution of a dynamical system, linear system, solution of linear system, fundamental matrix6
MathematicsNabanita Dey DSC-MTMG6TheoryDSE A2Unit INumerical MethodLagrange and Newton interpolation: linear and higher order, finite difference operators. Numerical differentiation: forward difference, backward difference and central Difference. Integration: trapezo10
MathematicsDebashis Kumar MandalDSC-MTMG6TheorySEC4Unit 2Graph theoryEulerian circuits, Hamiltonian cycles,1
MathematicsDebashis Kumar MandalDSC-MTMG6TheorySEC4Unit IGraph TheoryShortest path1
MathematicsDebashis Kumar MandalDSC-MTMG6TheorySEC4Unit IGraph TheoryShortest path and applications2
MathematicsDebashis Kumar MandalDSC-MTMG6TheorySEC4Unit 2Graph TheoryRepresentation of a graph by matrix, the adjacency matrix, incidence matrix,3
MathematicsDebashis Kumar MandalDSC-MTMG6TheorySEC4Unit IGraph TheoryTrees and fundamental Circuits5
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit 2Dynamics of a particlesEquation of motion of a particles on the plane in polar coordinates2
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit 2Dynamics of a particlesCentral orbits4
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit 3Dynamics of a particlesPlanetary Motion2
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit IDynamics of a particleExpressions for velocity and acceleration of a particle moving on a plane in Cartesian and Polar coordinates4
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit IDynamics of a particleSimple Harmonic Motion. Problem and extra problem1
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit IDynamics of a particleSimple Harmonic Motion. Problem2
MathematicsDebashis Kumar MandalMTMHCC6TheoryCore-13Unit IDynamics of a particleSimple Harmonic Motion. 2
MathematicsBINA BHOWMIK MTMHCC6TheoryCore-14Unit INumerical MethodsErrors: Relative, Absolute, Round off, Truncation.4
MathematicsBINA BHOWMIK MTMHCC6TheoryCore-14Unit INumerical MethodsTranscendental and Polynomial equations: Bisection method, Newton’s method, Secant method. Rate of convergence of these methods6
MathematicsBINA BHOWMIK MTMHCC6TheoryCore-14Unit INumerical MethodsSystem of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis5
MathematicsBINA BHOWMIK MTMHCC6TheoryCore-14Unit 2Numerical MethodsInterpolation: Lagrange and Newton’s methods. Error bounds. Finite difference operators. Gregory forward and backward difference interpolation.9
MathematicsBINA BHOWMIK MTMHCC6TheoryCore-14Unit 3Numerical MethodsNumerical Integration: Trapezoidal rule, Simpson’s 1/3rd rule. Composite Trapezoidal rule, Composite Simpson’s 1/3rd rule5
MathematicsBINA BHOWMIK MTMHCC6TheoryCore-14Unit 3Numerical MethodsOrdinary Differential Equations: Euler’s method. Runge-Kuttmethod of orders two and four.a4
MathematicsBINA BHOWMIK MTMHCC6PracticalCore-14Unit 4Numerical IntegrationTrapezoidal Rule • Simpson’s one third rule4
MathematicsBINA BHOWMIK MTMHCC6PracticalCore-14Unit 4Solution of transcendental and algebraic equations byBisection method • Newton Raphson method. • Regula Falsi method6
MathematicsBINA BHOWMIK MTMHCC6PracticalCore-14Unit 4Solution of ordinary differential equationsEuler method • Runge- Kuttaa Method of orders two and fou4
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber TheoryLinear Diophantine Equation2
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber THEORYThe fundamental theorem of arithmetic, statement of prime numbers.2
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber THEORYGoldbach conjecture, linear Congruences, reduced and complete set of Residues.2
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber THEORYChinese Remainder theorem,Fermats little theorem2
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber THEORYWilson's theorem,Number theretic function2
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber THEORYSum and number of divisors , multiplicative and totally multiplicative functions 2
MathematicsArpita SikderMTMHCC6TheoryDSE3Unit INumber theoretic functionEuler's phi function, Counting of numbrer of positive divisors and sum of positive divisors4
MathematicsNabanita Dey MTMHCC6TheoryDSE4Unit 3Boolean AlgebraDiscrete Mathematics: Principle of inclusion and exclusion, Pigeon-hole principle, Finite combinatorics, Generating functions, Partitions, Recurrence relations, Linear difference equations with consta10
COOCH BEHAR COLLEGE  Design & Development by Infotech Lab